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Abstract. Recent mass measurements show a substantial weakening of the binding-energy difference
δ2p(Z, N) = E(Z − 2, N) − 2E(Z, N) + E(Z + 2, N) in the neutron-deficient Pb isotopes. As δ2p is often
attributed to the size of the proton magic gap, it might be speculated that reduction in δ2p is related to a
weakening of the spherical Z = 82 shell. We demonstrate that the observed trend is described quantitatively
by self-consistent mean-field models in terms of deformed ground states of Hg and Po isotopes.

PACS. 21.10.Dr Binding energies and masses – 21.60.Jz Hartree-Fock and random-phase approximations
– 27.70.+q 150 ≤ A ≤ 189 – 27.80.+w 190 ≤ A ≤ 219

1 Introduction

The weakening or “quenching” of spherical shell closures
when going away from the valley of stability to weakly
bound nuclei is a phenomenon of great current interest.
It is now well established for neutron-rich N = 20 and
N = 28 isotones. The study of excited states of nuclei
around 32Mg populated by β−-decay [1] strongly indicates
that neutron-rich N = 20 nuclides are deformed. This is
consistent with direct mass measurements which, at magic
numbers 20 and 28, do not yield the familiar drop in the
two-neutron separation energy [2–4]. Energies and B(E2)
transition probabilities obtained from Coulomb excitation
of radioactive beams of nuclides around 44S demonstrate
also that N = 28 isotones below 48Ca show strong collec-
tivity in contradiction with a spherical shell closure [5].
Also, there are experimental hints from β−-decay studies
of 80Zn [6] and the systematics of 2+ and 4+ excitation
energies in Cd and Pd isotopes [7] that the N = 50 and
N = 82 shells are weakened when going towards neutron-
rich nuclei. Shell quenching in neutron-rich systems has
far-reaching consequences for astrophysics as it influences
the r-process path [8].
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The actual sequence of magic numbers in neutron-rich
nuclei is strongly influenced by an increasing diffuseness
of the neutron density, the closeness of the particle contin-
uum, and/or the changes in the spin-orbit splitting [9,10].
For light neutron-rich N = 28 isotones, this leads to an
increased collectivity and even strong stable quadrupole
deformation; see, e.g., refs. [11–13]. (For more discussion
of shell structure of neutron-rich magic and semi-magic
nuclei, the reader is referred to ref. [14] where a more
complete literature review is given.)

The experimental signatures of “magicity” could some-
times be contradicting. Consider, e.g., the N = 40 sub-
shell in 68Ni. While it is clearly visible in the systematics
of excited states [15,16], no sign of a shell effect is found
when looking at two-neutron separation energies. Theo-
retically, this apparent inconsistency can be explained in
terms of dynamic correlations beyond the mean field [17].
The calculated single-particle spectra in 68Ni indeed show
a N = 40 shell. However, the sudden increase in collec-
tivity in the adjacent isotopes obscures the picture when
looking at isotopic energy differences because one now
compares nuclei with different intrinsic structure. This ex-
ample demonstrates that the various signatures of shell
closures are not always equivalent.

All examples mentioned so far concern neutron shells.
The situation seems to be different for protons. For light
nuclei there is no indication that the proton shell closures
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fade away towards the proton drip line. The analysis of re-
cent large-scale mass measurements of proton-rich nuclei
around Z = 82 at GSI [18] indicates a weakening of the
proton shell gap in neutron-deficient Pb isotopes. This is
found when looking at the binding-energy differences [19]
and Qα values [20]. It is the aim of this paper to ana-
lyze these data from a theoretical perspective using self-
consistent mean-field models.

2 Signatures of shell closures

The notion of a shell closure comes from a mean-field de-
scription where one has full insight into the single-nucleon
energies εk as eigenvalues of the single-particle Hamilto-
nian. A shell closure is associated with a large gap in the
spectrum of εk. It has to be stressed that εk are not equiva-
lent to experimental single-particle energies Sk which are
measured as one-nucleon separation energies. To calcu-
late those, one has to take into account residual interac-
tions (such as pairing and coupling to low-lying vibrational
modes), as well as rearrangement effects and the core po-
larization due to the unpaired nucleon; see, e.g., refs. [21,
22].

Bunchiness of levels and the presence of gaps in the
single-particle spectrum can be quantified in terms of the
shell correction energy [23]

Eshell =
∑

k

εk −
∫

dε ε g(ε) , (1)

where g(ε) is a smoothed level density. Eshell is large and
negative for magic nuclei because there the discrete sum
has a particularly low value while the smoothed expression
varies only slowly with mass number. It is to be noted that
Eshell is a measure of the deviation of the actual level den-
sity at the Fermi energy from the smoothed level density.
For very heavy systems beyond lead, the large-level den-
sity inhibits pronounced shell gaps, and, yet, a dilution of
levels suffices to produce shell stabilization without magic
gaps; see ref. [24]. Shell corrections discussed in this study
were calculated using the Green’s function approach of
ref. [25]. The advantage of this new method is the proper
treatment of unbound states which appear close to the
Fermi level in weakly bound (proton-rich or neutron-rich)
nuclei.

Neither εk nor Eshell are directly measurable quanti-
ties. A quantity which is accessible from mass systematics
is the so-called two-proton shell gap

δ2p(Z,N) = E(Z−2, N)−2E(Z,N)+E(Z +2, N) , (2)

which is an approximation to the second derivative of the
nuclear binding energy. Let us assume that the single-
particle energies do not change within the three isotones
considered in eq. (2), and that the change in the total
binding energy comes from the variation of occupations
around the Fermi surface. In such a case, Koopman’s the-
orem states that δ2p should represent twice the gap in the

corresponding single-particle spectrum. This requires, how-
ever, that no dramatic rearrangements happen among the
three nuclei involved in δ2p. For many nuclei, such rear-
rangements are small and δ2p is a good representation of
a shell gap. But this interpretation does not hold in situa-
tions where adding or removing just two nucleons induces
a substantial change of the mean field. In spite of this
weakness, it is worth noting that binding-energy differ-
ences involving even-even nuclei only —like δ2p and, to
some extent, Qα— provide a cleaner signal for spectral
properties than the binding-energy expressions connect-
ing to the neighboring odd-mass systems. The double dif-
ference δp with odd-mass neighbors mixes shell gap, and
possibly rearrangement effects, with pairing effects, which
surely imply a dramatic rearrangement of the pairing field
by blocking.

Other experimental signatures of magic numbers are
excitation energies of vibrational states and the associ-
ated electric transition rates. The gap in the single-particle
spectrum sets the scale for the lowest excitations. Peaks
in the systematics of the lowest 2+ states in even-even
nuclei reflect the stiffness of the potential energy surface
which is large in closed-shell nuclei. This signature is some-
what masked by the residual interaction which shifts the
excitation energy considerably below the lowest particle-
hole (or two-quasiparticle) energy. Compared to binding-
energy differences, the data on vibrational states have the
advantage that they do not mix information from differ-
ent nuclei. On the other hand, calculations of collective
excitations require the use of techniques which go beyond
the mean-field approach; hence the information on magic
gaps is very difficult to extract.

3 Theoretical framework

We investigate the stability of the Z = 82 shell in the
framework of the self-consistent mean-field theory, either
non-relativistic, using Skyrme interactions (SHF), or the
relativistic mean-field (RMF) approach. As earlier stud-
ies have shown that parameterizations of the models of-
ten differ when extrapolated to weakly bound systems,
we choose a sample of representative parameterizations
which all give a very satisfactory description of stable nu-
clei but differ in details. Namely, we used the Skyrme
interactions SkP [26], SLy6 [27], SkI3, and SkI4 [28]. In
the relativistic calculations, we employed NL3 [29] and
NL-Z2 [30] parameterizations. The force SkP has effective
mass m∗/m = 1 and was originally designed to describe
the particle-hole and particle-particle channel of the ef-
fective interaction simultaneously. The forces SLy6, SkI3,
and SkI4 stem from recent fits which already include data
on exotic nuclei. Both SkP and SLy6 use the standard
spin-orbit interaction. The forces SkI3/4 employ a spin-
orbit force with modified isovector dependence. SkI3 con-
tains a fixed isovector part analogous to the RMF, whereas
SkI4 is adjusted allowing free variation of the isovector
spin-orbit term. The RMF force NL-Z2 is fitted in the
same way as SkI3 and SkI4 to a similar set of observables.
Pairing is treated within the BCS approximation using a
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Fig. 1. Two-proton gap parameter δ2p (2) for the chain of
Pb isotopes obtained in several spherical mean-field models.
Experimental values are marked with filled diamonds.

Fig. 2. Self-consistent single-proton energies εk for the chain
of Pb isotopes calculated with the spherical SkI3 model. Other
effective interactions give similar results. See ref. [30] for a com-
parison of calculated and experimental spectra for 208Pb.

zero-range delta force with the strength adjusted for each
mean-field parameterization as described in ref. [31].

4 Results

4.1 Spherical calculations

We start with a presentation of purely spherical calcula-
tions. By constraining the shape to be spherical, one can
dramatically reduce polarization effects. Consequently,
the assumptions behind the Koopman’s theorem can be
met, and the clear correspondence between δ2p and single-
particle energies emerges. Figure 1 shows the two-proton
shell gap parameter δ2p along the chain of Pb isotopes.
The experimental data are compared with results of spher-
ical mean-field calculations. While the experimental values
decrease monotonously when going from 208Pb towards
the proton drip line, theoretical results show a very dif-
ferent trend. Namely, δ2p slightly increases with Z. The

Fig. 3. Spherical proton shell correction for the chain of Pb
isotopes extracted from self-consistent calculations.

corresponding spherical single-proton energies in SkI3 are
displayed in fig. 2. It is seen that the Z = 82 shell gap
stays large for all the Pb isotopes considered, and it grows
slightly when approaching the proton drip line. (Other
parameterizations employed in our study give similar re-
sults.) This result is consistent with fig. 1: δ2p reproduces
twice the shell gap seen in the spectrum of εk. This demon-
strates that the idea behind the two-nucleon shell gap as
a signature of shell closures is correct, provided the mean
field does not change much between the nuclei involved
in its evaluation. The restriction to spherical calculations
enforces this feature.

The stability of the Z = 82 shell is confirmed when
inspecting the proton shell correction energy Eshell,p ex-
tracted from our self-consistent calculations; see fig. 3.
There are some differences among the various forces as
far as the actual values are concerned. For instance, RMF
models generally yield smaller shell correction than SHF
models. The common feature seen in fig. 3 is that all the
models predict the same trend, namely that the magnitude
of the proton shell correction is slightly increasing when
going proton rich. One can thus say that all the indicators
of shell effects considered in our study, i.e., single-particle
energies, shell corrections, and δ2p, give a consistent pic-
ture of a stable Z = 82 shell for all neutron-deficient Pb
isotopes. Contrary to what may be suggested by the ex-
perimental plot of δ2p, the proton magic gap does not de-
crease, but slightly increases when approaching the proton
drip line.

4.2 Deformed calculations

It is well known that shape coexistence is a common fea-
ture in neutron-deficient Hg, Pb, and Po nuclei, and that
most of the Hg and Po nuclei have deformed ground states
[32,33]. Figure 4 shows the calculated deformation en-
ergies ∆E (defined as a difference between ground-state
binding energies obtained in deformed and spherical cal-
culations) and quadrupole deformations β2 for even-even
Hg, Pb, and Po isotopic chains. Most nuclei have deformed
ground states with an energy gain of several MeV. The
potential energy surfaces calculated in this region exhibit
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Fig. 4. Calculated deformation energy ∆E (top) and associated quadrupole deformation β2 = 4π 〈r2 Y20〉/(3Ar2
0) with

r0 = 1.2 A1/3 fm (bottom) for the ground states of even-even Hg, Pb, and Po isotopes. Experimental quadrupole deformations
(filled diamonds) are taken from ref. [34].

several competing minima, often leading to shape coex-
istence and configuration mixing, see e.g., refs. [35–38]
and references therein. In fact, the question if whether
there were strongly deformed nuclei near the magic pro-
ton shell Z = 82 was already raised as early as 1972 [39,
40]. Experimentally, the even-even 176-190Hg isotopes have
oblate ground states but also prolate excited states [41].
The data on excitation spectra and charge radii for the
Pb isotopes, on the other hand, are consistent with the
assumption that the ground states down to N = 100 are
spherical [33,42,43], although one has to be aware that
the potential landscape for Pb also becomes softer for
proton-rich isotopes. As a result, coexisting oblate and
prolate minima show up [32,38], the most spectacular be-
ing the multitude of coexisting structures in 186Pb [44].
A systematic analysis of available excitation data in Po
isotopes demonstrates that collectivity increases rapidly
in neutron-deficient isotopes [33,45].

When deformation effects are taken into account, the
behavior of δ2p changes dramatically. As shown in fig. 5,
all our models predict gradually decreasing δ2p towards
the proton drip line in accordance with experiment. The
crucial point is that one deals with systems where the
mean field is extremely sensitive to small changes in nu-

Fig. 5. Two-proton gap parameter δ2p (2) for the chain of
Pb isotopes obtained in several deformed mean-field models.
Experimental values are marked with filled diamonds.

cleon number. These rearrangement effects strongly affect
the behavior of δ2p and mask the presence of the magic
Z = 82 proton shell; it is nuclear deformation that ex-
plains the apparent discrepancy seen in fig. 1.

Complementary information on shell effects can be
drawn from α-decay studies. An analysis of reduced α
widths and Qα values of nuclei around 182Pb suggests a
weakening of the Z = 82 shell effect [20]. However, since
Qα values are obtained from a finite-difference formula
similar to δ2p, experimental systematics Qα reflect de-
formation effects and the structural change of ground
states between the isotones of Hg, Pb, and Po. Moreover,
α-decay hindrance factor systematics can be understood
assuming the stability of the spherical Z = 82 shell at the
very proton-rich side [46,47] and can be described in the
language of shape mixing [46,48].

The rich structure of potential landscapes in the region
of proton-rich Pb nuclei provides a challenging benchmark
for theoretical modeling. The quantitative description of
all details is beyond the abilities of current self-consistent
mean-field models and, because of the presence of low-
lying intruder states, also requires the use of sophisticated
techniques which incorporate configuration mixing effects.
Small shifts in single-particle levels or changes in the pa-
rameterization of pairing interaction do influence relative
positions of coexisting minima. Therefore, many forces
miss the exact location of the onset of deformation for
the Hg isotopes, see fig. 4 and [49]. Some forces (RMF and
SkI3) even predict deformed ground states in some Pb iso-
topes —in contradiction with experiment. We have seen
in fig. 4 that the inclusion of deformation improves the
agreement of theory with experiment for δ2p. Still, some
discrepancies remain. Note that all SHF forces already
overestimate δ2p for the doubly magic 208Pb, although this
nucleus is spherical, as well as its neighboring nucleus. The
simplest excuse is that the single-particle states in 208Pb
are not perfectly described by the models (see, e.g., [30]).
However, another important source of discrepancy are cor-
relations beyond the mean field. Their influence on the
two-neutron separation energies around 208Pb has been
studied using the generator coordinate method (GCM) in
ref. [50]. The important outcome is that the quadrupole
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correlations decrease the two-neutron shell gap at the shell
closure. A similar effect can be expected for the two-proton
shell gap parameter. The effect of quadrupole correlations
on δ2p is probably largest in the transitional region of the
onset of static deformation around N = 120 where also the
discrepancy between experiment and our mean-field calcu-
lations is largest. Configuration mixing effects in proton-
rich Pb isotopes were studied in refs. [51,52], but were
aimed at excitation energies, and not mass systematics
(see also recent GCM work [53]).

5 Summary

Finite-difference binding-energy indicators such as δ2q or
Qα loose their validity as signatures of shell closures as
soon as they are used in a region where the structure of
nuclear ground states is rapidly changing. Such changes
of nuclear ground-state configurations with Z and N ex-
plain qualitatively the systematics of experimental δ2p and
Qα in the neutron-deficient Pb region. In particular, our
calculations do not support previous speculations about
quenching of the Z = 82 shell in the neutron-deficient Pb
isotopes.

It is important, however, to remember that the com-
plex structure of nuclei from shape-coexisting regions
limits their description in terms of mean-field models.
The presence of low-lying intruder states having different
shapes requires the use of theories which can account for
configuration mixing effects. Therefore, the whole notion
of a “shell gap”, which originates from the mean-field the-
ory, can be questionable in such situations. In general, one
has to be aware that the usual signature of spherical shell
closures might not be robust when going to exotic nuclei
far from stability in which correlations play an important
role.
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